

 Navigation

 	
 index

 	
 next |

 	Sigma 0.0.1 documentation

Sigma.jl’s documentation

Sigma is a probabilistic programming environment implemented in Julia.
In it, you can specify probabilistic models as normal programs, and perform inference.

Sigma is built on top of Julia but not yet in the official Julia Package repository. You can still easily install it from a Julia repl with:

Pkg.clone("https://github.com/zenna/Sigma.jl.git")

Sigma is then loaded with

using Sigma

Contents:

	Getting Started

	Building Probabilistic Models

	Random Arrays
	Fixed Size Random Array

	Primitive Univariate Random Variable
	Uniform Distribution

	Logistic Distribution

	Normal Distribution

	Inference Queries
	Probability Queries

	Conditional Probability Queries

	Probability bounds

	Sampling

	Conditional Sampling

	Precision

	License

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Zenna Tavares.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Sigma 0.0.1 documentation

Getting Started

First we need to include Sigma

julia> using Sigma

Then, we create a uniform distribution x and draw 100 samples from it using rand:

julia> x = uniform(0,1)
RandVar{Float64}

julia> rand(x, 100)
100-element Array{Float64,1}:
 0.376264
 0.492391
 ...

Then we can find the probability that x^2 is greater than 0.6:

julia> prob(x^2 > 0.6)
[0.225463867187499 0.225463867187499]

Then we can introduce an exponentially distributed variable y, and find the probability that x^2 is greater than 0.6 under the condition that the sum of x and y is less than 1

julia> y = exponential(0.5)
julia> prob(x^2 > 0.6, x + y < 1)
[0.053548951048950494 0.06132144691466614]

Then, instead of computing conditional probabilities, we can sample from x under the same condition:

julia> rand(x, x + y < 1)
0.04740462764340371

 Copyright 2015, Zenna Tavares.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Sigma 0.0.1 documentation

Building Probabilistic Models

Building probabilistic models in Sigma is simple. A probabilistic model is simply a random variable. Sigma provides a collection of functions which construct random variables. Arguably the simplest random variable is the standard uniform, which is created by uniform:

x = uniform(0,1)
 RandVar{Float64}

Random variables are values of the RandVar{T} type, which is paramterised by T. There are many ways to think about random variables, but for the most part you can treat them as if they were values of the type T. That is, you can treat a RandVar{Float64} as if it were a Float64. For example, you can apply primitive functions to them:

x = uniform(0,1)
y = uniform(0,1)
x + y
 RandVar{Float64}

Notice x + y is also a random variable. When you apply functions to random variables which treat them as if they were numbers (e.g. +, -, /, ...), you will get back a random variable of the appropriate type.

Of course Sigma has random variables of type other than Float64. To sample from a Bernoulli distribution use flip (named so because it is like flipping a coin):

x = flip(0.6)
 RandVar{Bool}

Similarly, boolean functions can be applied to RandVar{Bool}

x = flip(0.3)
y = flip(0.6)
z = x & y

Note: Short-cut operators like &&, ||, ? and if cannot be used with RandVar{Bool}. This is a tricky limitation we are trying to solve.

With these tools we can now make a more complex model:

a = logistic(0.5, 0.5)
x = uniform(0,1)
y = exponential(x)

z = ifelse((y > 0.4) | flip(0.3), sin(a), atan(x+y)^3)

 Copyright 2015, Zenna Tavares.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Sigma 0.0.1 documentation

Random Arrays

Sigma.jl provides support for multivariate random variables, i.e., random arrays.
Random arrays are values of the type RandArray{T}.

Fixed Size Random Array

The simplest (and currently only) type of random array is essentially just a normal (dense) arrays of values of type RandVar.
A RandArray is created using a primitive multivariate random variable constructor. One simple example is mvuniform where mv stands for multivariate:

x = Sigma.mvuniform(0,1,10)
 RandArray{Float64}

Here x is a random array of 10 independent random variables uniformly distributed between 0 and 1.

Most of the normal array functions can be used with a RandArray. For instance we can inspect its size or index it with integer indices.

julia> size(x)
(10,)

julia> x[1]
RandVar{Float64}

But a RandArray is also a random variable and hence we can do things like sample from it:

julia> rand(x)
10-element Array{Float64,1}:
 0.558689
 0.791846
 0.874605
 0.212741
 0.476137
 0.246175
 0.7308
 0.625276
 0.154833
 0.619555

Note:

	A RandArray cannot be indexed by a RandVar{Int}.

Like normal arrays, A RandArray can be created with uninitialized values:

Sigma.RandArray(Float64, 5,5)

A RandArray can also be initialised from a normal arrays of either constants or values of type RandVar, so long as they are all of the same type.

X = RandArray([uniform(0,1), exponential(0.5))])
Y = RandArray([1.0, 3.0])

 Copyright 2015, Zenna Tavares.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Sigma 0.0.1 documentation

Primitive Univariate Random Variable

The following is a list of the primitive univariate random variables currently
supported in Sigma. In addition to categorising random variables by their output
type, we distinguish between random variables which can and cannot be expressed
in closed form. This is because there are currently restrictions
on where random variables without a closed form solution (e.g. normal) can be
used.

Uniform Distribution

The probability density function of a Continuous Uniform distribution over an interval \([a, b]\) is

\[f(x; a, b) = \frac{1}{b - a}, \quad a \le x \le b\]

	
uniform(a::Real, b::Real)

	Returns uniformly distributed random variable between a and b

uniform(a, b) # Uniform distribution over [a, b]

Logistic Distribution

The probability density function of a Logistic distribution with location μ and scale β is

\[f(x; \mu, \beta) = \frac{1}{4 \beta} \mathrm{sech}^2
\left(\frac{x - \mu}{\beta} \right)\]

	
logistic(μ::Real, β::Real)

	Returns logistically distributed random variable with location μ and scale β

Normal Distribution

The probability density function of a Normal distribution with mean μ and variance σ is

\[f(x; \mu, \sigma) = \frac{1}{\sqrt{2 \pi \sigma^2}}
\exp \left(- \frac{(x - \mu)^2}{2 \sigma^2} \right)\]

	
normal(μ::Real, σ::Real)

	Returns normally distributed random variable with location μ and scale β

a = normal() # standard Normal distribution with zero mean and unit variance
b = normal(mu) # Normal distribution with mean mu and unit variance
normal(mu, sig) # Normal distribution with mean mu and variance sig^2
normal(a,b) # Normal distribution with normal parameters

 Copyright 2015, Zenna Tavares.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Sigma 0.0.1 documentation

Inference Queries

Sigma supports four kinds of inference query:

	Probability Queries - probability of X

	Conditional probability Queries - probability of X given that Y is true

	Sampling - sample from X

	Conditional Sampling: sample from X given that Y is true

Probability Queries

Probability queries are done by prob:

	
prob(X::RandVar{Bool})

	Return a the probability that X is true.
Returns an interval \(I = [a,b]\), such that \(a \leq P(X) \leq b\).

X = uniform(0,1)
Y = uniform(0,1)
prob(X + Y > 1)

Conditional Probability Queries

Conditional probability queries are also done with prob, but it expects two boolean RandVars as input:

	
prob(X::RandVar{Bool}, Y::RandVar{Bool})

	Return \(P(X \vert Y)\) : the conditional probability that X is true given Y is true.
Returns an interval \(I = [a,b]\) such that \(a \leq P(X \vert Y) \leq b\).

X = uniform(0,1)
Y = uniform(0,1)
prob(Y > 0.0,X > 0.0)

Probability bounds

As described above, a (conditional) probability query returns a probability bound, i.e. an interval with a lower and upper bound, instead of a single number. Sigma guarantees that the true answer is within these bounds.

Bounds are representing as intervals from the AbstractDomains [https://github.com/zenna/AbstractDomains.jl] package. If you really want a single point, you can use mid to get the midpoint between the ends.

x = prob(Y > 0.0, X > 0.0)
mid(x)

Note:

	Probability and conditional probability queries will only work for relatively low dimensional problems (less than around 10). You can find the dimensionality of a random variable using ndims.

julia> X = uniform(0,1)
RandVar{Float64}

julia> Y = uniform(0,1)
RandVar{Float64}

julia> Z = X + Y
RandVar{Float64}

julia> ndims(Z)
2

Sampling

To sample from any random variable use rand

	
rand{T}(X::RandVar{T})

	Sample a value of type T from X

X = exponential(0.5)
rand(X)

Conditional Sampling

Just like prob, to conditionally sample use rand with the second argument with the RandVar{Bool} you want to condition on:

	
rand{T}(X::RandVar{T}, Y::RandVar{Bool}, n::Integer)

	Sample n values of type T from X conditioned on Y being true

X = exponential(0.5)
rand(X, X>0.5)

A RandArray can also used for the first argument to conditionally sample from:

	
rand{T}(X::RandArray{T}, Y::RandVar{Bool}, n::Integer)

	Sample n Arrays of type Array{T} from X conditioned on Y being true

Xs = mvuniform(0,1,10)
rand(Xs, sum(X) == 0.5)
10-element Array{Float64,1}:
 0.997244
 0.507635
 0.503137
 0.503914
 0.504609
 0.507393
 0.500201
 0.503708
 0.501251
 0.00574937

Often times you want to sample from a collection of random variables conditioned on some proposition.
rand also can take a tuple of RandVar s and RandArray s as its first argument.

	
rand{T}(X::Tuple, Y::RandVar{Bool}, n::Integer)

	Sample n tuples of RandVar``s or ``RandArray``s conditioned on ``Y being true

Xs = mvuniform(0,1,10)
Y = logistic(0.5, 0.5)
rand((Y,Xs), sum(X) == Y)
(9.941006795107837,
[0.997761,
 0.999576,
 0.99596,
 0.997781,
 0.999121,
 0.99348,
 0.99694,
 0.998275,
 0.998735,
 0.995129])

Note: if the number of samples n is omitted, it is assumed to be 1 and only the sample (not a list of samples) is returned.

Precision

Sigma solves a relaxed version of the problem you give it. You can control how severe that relaxation is
using precision. Both rand and prob take precision as a keyword argument of type Float64.
Increasing the precision will typically make the algorithms go slower, but the answer will be more precise.
For example:

X = flip(0.5)
Y = flip(0.5)
@time prob(X & !Y; precision = 0.1)

A bit faster but very innacurate
julia> @time prob(X & !Y; precision = 1.0)
elapsed time: 0.005621369 seconds (33612 bytes allocated)
[1.0 1.0]

Slower but more accurate
@time prob(X & !Y; precision = 0.0001)
elapsed time: 0.00789781 seconds (72828 bytes allocated)
[0.24999999999999994 0.24999999999999994]

 Copyright 2015, Zenna Tavares.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Sigma 0.0.1 documentation

License

The Sigma.jl package is licensed under the MIT “Expat” License:

> Copyright (c) 2015: Zenna Tavares.
>
> Permission is hereby granted, free of charge, to any person obtaining
> a copy of this software and associated documentation files (the
> “Software”), to deal in the Software without restriction, including
> without limitation the rights to use, copy, modify, merge, publish,
> distribute, sublicense, and/or sell copies of the Software, and to
> permit persons to whom the Software is furnished to do so, subject to
> the following conditions:
>
> The above copyright notice and this permission notice shall be
> included in all copies or substantial portions of the Software.
>
> THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
> EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
> MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
> IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
> CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
> TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
> SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 Copyright 2015, Zenna Tavares.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Sigma 0.0.1 documentation

Index

 L
 | N
 | P
 | U

L

 	

 	logistic() (built-in function)

N

 	

 	normal() (built-in function)

P

 	

 	prob() (built-in function), [1]

U

 	

 	uniform() (built-in function)

 Copyright 2015, Zenna Tavares.
 Created using Sphinx 1.3.1.

 _static/down.png

_static/ajax-loader.gif

_static/comment-close.png

_static/up.png

_static/file.png

_static/comment-bright.png

_static/plus.png

_static/comment.png

exported.html

 Navigation

 		
 index

 		Sigma 0.0.1 documentation »

Sigma

Exported

call(X::SymbolicRandVar{T}, ω) ¶

Apply a random variable to some randomness

source:
Sigma/src/randvar/symbolic.jl:23

cond_sample{T}(X::ExecutableRandVar{T}, Y::RandVar{Bool}, n::Integer) ¶

n conditional samples from X given Y is true

source:
Sigma/src/query/rand.jl:43

dims(X::SymbolicRandVar{T}) ¶

Return a Set of dimension indices of a random variable

source:
Sigma/src/randvar/symbolic.jl:4

model(X::Union(RandArray{T, N}, RandVar{T}), Y::RandVar{Bool}) ¶

Generates a ‘model’ from X given that Y is true, a model is like a sample
except that it does not follow any well defined distribution

source:
Sigma/src/query/model.jl:36

prob(Y::RandVar{Bool}) ¶

Lower and upper bounds for marginal probability that Y is true

source:
Sigma/src/query/prob.jl:4

rangetype{T}(X::RandVar{T}) ¶

The type of the range of a random variable

source:
Sigma/src/randvar.jl:21

RandArray{T, N} ¶

An array of random variables (and also a random variable itself)
T is the range type of elements (e.g for multivariate normal, T = Float64)
N is the dimensionality of array

source:
Sigma/src/randvar.jl:16

RandVar{T} ¶

Random Variables are functions from the sample space to some other space

source:
Sigma/src/randvar.jl:2

Internal

abstract_cond_sample{T}(X::ExecutableRandVar{T}, Y::RandVar{Bool}, n::Integer) ¶

n abstract Conditional samples from X given Y is true

source:
Sigma/src/query/rand.jl:54

abstract_omega(n::Int64) ¶

Build an omega of n dimensions

source:
Sigma/src/omega.jl:33

abstract_sample(p::SampleablePartition{D<:Domain{T}}) ¶

Point sample from preimage - may be invalid point due to approximations

source:
Sigma/src/refinement/partition.jl:40

abstract_sample_partition(Y::RandVar{Bool}, n::Integer) ¶

n abstract samples from preimage: Y^-1({true})

source:
Sigma/src/query/rand.jl:19

all{N}(Xs::RandArray{Bool, N}) ¶

Is every element in Xs true, returns Bool-valued RandVar

source:
Sigma/src/randvar/randarray.jl:128

issmall(box::Union(LazyBox{T}, HyperBox{T}), precision::Float64) ¶

Is this box small (enough to be accepted)

source:
Sigma/src/refinement.jl:14

measure(p::ApproxPartition{D<:Domain{T}}) ¶

Lower and upper bounds for measure of partition

source:
Sigma/src/refinement/partition.jl:12

ndims(X::RandVar{T}) ¶

Number of dimensions of a random variable

source:
Sigma/src/randvar.jl:24

neverstop(_...) ¶

A stop function used as dummy stopping criteria in while loops

source:
Sigma/src/refinement.jl:11

point_sample(chain::Array{T<:Domain{T}, 1}) ¶

Get point samples out of a abstract Markov chain

source:
Sigma/src/refinement/chain.jl:7

point_sample(p::SampleablePartition{D<:Domain{T}}, n::Integer) ¶

n Point samples from preimage - may be invalid point due to approximations

source:
Sigma/src/refinement/partition.jl:43

point_sample_exact(p::SampleablePartition{D<:Domain{T}}, Y::RandVar{Bool}) ¶

Do refined rejection sampling from preimage

source:
Sigma/src/refinement/partition.jl:52

point_sample_mc(Y::RandVar{Bool}, n::Integer) ¶

n approximate point Sample from preimage: Y^-1({true})

source:
Sigma/src/query/rand.jl:67

point_sample_partition(Y::RandVar{Bool}, n::Integer) ¶

n point Sample from preimage: Y^-1({true})

source:
Sigma/src/query/rand.jl:29

pre_mc{D<:Domain{T}}(Y::RandVar{Bool}, init_box::D<:Domain{T}, niters::Integer, ::Type{AIM}) ¶

Uniform sample of subset of preimage of Y under f unioned with X.

source:
Sigma/src/refinement/aim.jl:88

preimage_model(Y::DRealRandVar{Bool}) ¶

Generates a ‘model’ from X given that Y is true, a model is like a sample
except that it does not follow any wel ldefined distribution

source:
Sigma/src/query/model.jl:6

proposebox_tl{D<:Domain{T}}(X::RandVar{T}, box::D<:Domain{T}) ¶

Proposes a box using refinement

source:
Sigma/src/refinement/aim.jl:10

rand{T}(X::ExecutableRandVar{T}) ¶

Generate an unconditioned random sample from X

source:
Sigma/src/query/rand.jl:5

rand{T}(X::ExecutableRandVar{T}, n::Integer) ¶

Generate n unconditioned random samples from distribution of X

source:
Sigma/src/query/rand.jl:8

AIM ¶

Abstract Independent Metropolis Sampliing samples events in preimage
uniformly in convergence of the Markov Chain.
This algorithm is useful for high dimensional problems

source:
Sigma/src/refinement/aim.jl:7

ApproxPartition{D<:Domain{T}} ¶

A partition of a set containing both an under approximation, and the rest
The rest is an overapproximation - rest

source:
Sigma/src/refinement/partition.jl:6

ConstantRandVar{T} ¶

A constant value. A constant function which ‘ignores’ input, e.g. ω->5

source:
Sigma/src/randvar/symbolic.jl:42

ExecutableRandVar{T} ¶

Can be excuted as a normal julia function

source:
Sigma/src/randvar.jl:8

OmegaRandVar{T} ¶

Simplest RandVar: ω->ω[dim] - extracts dim component of omega

source:
Sigma/src/randvar/symbolic.jl:66

SExpr ¶

A Lisp SExpr

source:
Sigma/src/solver/drealbinary.jl:7

SampleablePartition{D<:Domain{T}} ¶

A partition which is efficient for drawing many samples.

source:
Sigma/src/refinement/partition.jl:23

Solver ¶

Solvers inference problems. Used mostly as an enumeration for different
inference procedures, e.g. rand(X,Y,DRealSolver)

source:
Sigma/src/solver.jl:3

SymbolicRandVar{T} ¶

A symbolic canonical representation of a random variable

source:
Sigma/src/randvar.jl:5

AbstractOmega ¶

Abstract representations of sample space - euclidean box

source:
Sigma/src/omega.jl:27

ConcreteOmega ¶

A concrete (i.e. not abstract) element ω in sample space Ω

source:
Sigma/src/omega.jl:30

Omega ¶

All kinds of Omega

source:
Sigma/src/omega.jl:24

 © Copyright 2015, Zenna Tavares.
 Created using Sphinx 1.3.1.

_static/down-pressed.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		Sigma 0.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Zenna Tavares.
 Created using Sphinx 1.3.1.

_static/minus.png

