
Sigma Documentation
Release 0.0.1

Zenna Tavares

September 23, 2015

Contents

1 Getting Started 3

2 Building Probabilistic Models 5

3 Random Arrays 7
3.1 Fixed Size Random Array . 7

4 Primitive Univariate Random Variable 9
4.1 Uniform Distribution . 9
4.2 Logistic Distribution . 9
4.3 Normal Distribution . 9

5 Inference Queries 11
5.1 Probability Queries . 11
5.2 Conditional Probability Queries . 11
5.3 Probability bounds . 11
5.4 Sampling . 12
5.5 Conditional Sampling . 12
5.6 Precision . 13

6 License 15

7 Indices and tables 17

i

ii

Sigma Documentation, Release 0.0.1

Sigma is a probabilistic programming environment implemented in Julia. In it, you can specify probabilistic models
as normal programs, and perform inference.

Sigma is built on top of Julia but not yet in the official Julia Package repository. You can still easily install it from a
Julia repl with:

Pkg.clone("https://github.com/zenna/Sigma.jl.git")

Sigma is then loaded with

using Sigma

Contents:

Contents 1

Sigma Documentation, Release 0.0.1

2 Contents

CHAPTER 1

Getting Started

First we need to include Sigma

julia> using Sigma

Then, we create a uniform distribution x and draw 100 samples from it using rand:

julia> x = uniform(0,1)
RandVar{Float64}

julia> rand(x, 100)
100-element Array{Float64,1}:

0.376264
0.492391

...

Then we can find the probability that x^2 is greater than 0.6:

julia> prob(x^2 > 0.6)
[0.225463867187499 0.225463867187499]

Then we can introduce an exponentially distributed variable y, and find the probability that x^2 is greater than 0.6
under the condition that the sum of x and y is less than 1

julia> y = exponential(0.5)
julia> prob(x^2 > 0.6, x + y < 1)
[0.053548951048950494 0.06132144691466614]

Then, instead of computing conditional probabilities, we can sample from x under the same condition:

julia> rand(x, x + y < 1)
0.04740462764340371

3

Sigma Documentation, Release 0.0.1

4 Chapter 1. Getting Started

CHAPTER 2

Building Probabilistic Models

Building probabilistic models in Sigma is simple. A probabilistic model is simply a random variable. Sigma provides
a collection of functions which construct random variables. Arguably the simplest random variable is the standard
uniform, which is created by uniform:

x = uniform(0,1)
RandVar{Float64}

Random variables are values of the RandVar{T} type, which is paramterised by T. There are many ways to think
about random variables, but for the most part you can treat them as if they were values of the type T. That is, you can
treat a RandVar{Float64} as if it were a Float64. For example, you can apply primitive functions to them:

x = uniform(0,1)
y = uniform(0,1)
x + y

RandVar{Float64}

Notice x + y is also a random variable. When you apply functions to random variables which treat them as if they
were numbers (e.g. +, -, /, ...), you will get back a random variable of the appropriate type.

Of course Sigma has random variables of type other than Float64. To sample from a Bernoulli distribution use
flip (named so because it is like flipping a coin):

x = flip(0.6)
RandVar{Bool}

Similarly, boolean functions can be applied to RandVar{Bool}

x = flip(0.3)
y = flip(0.6)
z = x & y

Note: Short-cut operators like &&, ||, ? and if cannot be used with RandVar{Bool}. This is a tricky limitation
we are trying to solve.

With these tools we can now make a more complex model:

a = logistic(0.5, 0.5)
x = uniform(0,1)
y = exponential(x)

z = ifelse((y > 0.4) | flip(0.3), sin(a), atan(x+y)^3)

5

Sigma Documentation, Release 0.0.1

6 Chapter 2. Building Probabilistic Models

CHAPTER 3

Random Arrays

Sigma.jl provides support for multivariate random variables, i.e., random arrays. Random arrays are values of the type
RandArray{T}.

3.1 Fixed Size Random Array

The simplest (and currently only) type of random array is essentially just a normal (dense) arrays of values of type
RandVar. A RandArray is created using a primitive multivariate random variable constructor. One simple example
is mvuniform where mv stands for multivariate:

x = Sigma.mvuniform(0,1,10)
RandArray{Float64}

Here x is a random array of 10 independent random variables uniformly distributed between 0 and 1.

Most of the normal array functions can be used with a RandArray. For instance we can inspect its size or index it
with integer indices.

julia> size(x)
(10,)

julia> x[1]
RandVar{Float64}

But a RandArray is also a random variable and hence we can do things like sample from it:

julia> rand(x)
10-element Array{Float64,1}:
0.558689
0.791846
0.874605
0.212741
0.476137
0.246175
0.7308
0.625276
0.154833
0.619555

Note:

• A RandArray cannot be indexed by a RandVar{Int}.

7

Sigma Documentation, Release 0.0.1

Like normal arrays, A RandArray can be created with uninitialized values:

Sigma.RandArray(Float64, 5,5)

A RandArray can also be initialised from a normal arrays of either constants or values of type RandVar, so long
as they are all of the same type.

X = RandArray([uniform(0,1), exponential(0.5))])
Y = RandArray([1.0, 3.0])

8 Chapter 3. Random Arrays

CHAPTER 4

Primitive Univariate Random Variable

The following is a list of the primitive univariate random variables currently supported in Sigma. In addition to
categorising random variables by their output type, we distinguish between random variables which can and cannot be
expressed in closed form. This is because there are currently restrictions on where random variables without a closed
form solution (e.g. normal) can be used.

4.1 Uniform Distribution

The probability density function of a Continuous Uniform distribution over an interval [𝑎, 𝑏] is

𝑓(𝑥; 𝑎, 𝑏) =
1

𝑏− 𝑎
, 𝑎 ≤ 𝑥 ≤ 𝑏

uniform(a::Real, b::Real)
Returns uniformly distributed random variable between a and b

uniform(a, b) # Uniform distribution over [a, b]

4.2 Logistic Distribution

The probability density function of a Logistic distribution with location 𝜇 and scale 𝛽 is

𝑓(𝑥;𝜇, 𝛽) =
1

4𝛽
sech2

(︂
𝑥− 𝜇

𝛽

)︂

logistic(𝜇::Real, 𝛽::Real)
Returns logistically distributed random variable with location 𝜇 and scale 𝛽

4.3 Normal Distribution

The probability density function of a Normal distribution with mean 𝜇 and variance 𝜎 is

𝑓(𝑥;𝜇, 𝜎) =
1√
2𝜋𝜎2

exp

(︂
− (𝑥− 𝜇)2

2𝜎2

)︂

9

Sigma Documentation, Release 0.0.1

normal(𝜇::Real, 𝜎::Real)
Returns normally distributed random variable with location 𝜇 and scale 𝛽

a = normal() # standard Normal distribution with zero mean and unit variance
b = normal(mu) # Normal distribution with mean mu and unit variance
normal(mu, sig) # Normal distribution with mean mu and variance sig^2
normal(a,b) # Normal distribution with normal parameters

10 Chapter 4. Primitive Univariate Random Variable

CHAPTER 5

Inference Queries

Sigma supports four kinds of inference query:

• Probability Queries - probability of X

• Conditional probability Queries - probability of X given that Y is true

• Sampling - sample from X

• Conditional Sampling: sample from X given that Y is true

5.1 Probability Queries

Probability queries are done by prob:

prob(X::RandVar{Bool})
Return a the probability that X is true. Returns an interval 𝐼 = [𝑎, 𝑏], such that 𝑎 ≤ 𝑃 (𝑋) ≤ 𝑏.

X = uniform(0,1)
Y = uniform(0,1)
prob(X + Y > 1)

5.2 Conditional Probability Queries

Conditional probability queries are also done with prob, but it expects two boolean RandVars as input:

prob(X::RandVar{Bool}, Y::RandVar{Bool})
Return 𝑃 (𝑋|𝑌) : the conditional probability that X is true given Y is true. Returns an interval 𝐼 = [𝑎, 𝑏] such
that 𝑎 ≤ 𝑃 (𝑋|𝑌) ≤ 𝑏.

X = uniform(0,1)
Y = uniform(0,1)
prob(Y > 0.0,X > 0.0)

5.3 Probability bounds

As described above, a (conditional) probability query returns a probability bound, i.e. an interval with a lower and
upper bound, instead of a single number. Sigma guarantees that the true answer is within these bounds.

11

Sigma Documentation, Release 0.0.1

Bounds are representing as intervals from the AbstractDomains package. If you really want a single point, you can
use mid to get the midpoint between the ends.

x = prob(Y > 0.0, X > 0.0)
mid(x)

Note:

• Probability and conditional probability queries will only work for relatively low dimensional problems (less
than around 10). You can find the dimensionality of a random variable using ndims.

julia> X = uniform(0,1)
RandVar{Float64}

julia> Y = uniform(0,1)
RandVar{Float64}

julia> Z = X + Y
RandVar{Float64}

julia> ndims(Z)
2

5.4 Sampling

To sample from any random variable use rand

rand{T}(X::RandVar{T})
Sample a value of type T from X

X = exponential(0.5)
rand(X)

5.5 Conditional Sampling

Just like prob, to conditionally sample use rand with the second argument with the RandVar{Bool} you want to
condition on:

rand{T}(X::RandVar{T}, Y::RandVar{Bool}, n::Integer)
Sample n values of type T from X conditioned on Y being true

X = exponential(0.5)
rand(X, X>0.5)

A RandArray can also used for the first argument to conditionally sample from:

rand{T}(X::RandArray{T}, Y::RandVar{Bool}, n::Integer)
Sample n Arrays of type Array{T} from X conditioned on Y being true

Xs = mvuniform(0,1,10)
rand(Xs, sum(X) == 0.5)
10-element Array{Float64,1}:
0.997244
0.507635
0.503137
0.503914

12 Chapter 5. Inference Queries

https://github.com/zenna/AbstractDomains.jl

Sigma Documentation, Release 0.0.1

0.504609
0.507393
0.500201
0.503708
0.501251
0.00574937

Often times you want to sample from a collection of random variables conditioned on some proposition. rand also
can take a tuple of RandVar s and RandArray s as its first argument.

rand{T}(X::Tuple, Y::RandVar{Bool}, n::Integer)
Sample n tuples of RandVar‘‘s or ‘‘RandArray‘‘s conditioned on ‘‘Y being true

Xs = mvuniform(0,1,10)
Y = logistic(0.5, 0.5)
rand((Y,Xs), sum(X) == Y)
(9.941006795107837,
[0.997761,
0.999576,
0.99596,
0.997781,
0.999121,
0.99348,
0.99694,
0.998275,
0.998735,
0.995129])

Note: if the number of samples n is omitted, it is assumed to be 1 and only the sample (not a list of samples) is
returned.

5.6 Precision

Sigma solves a relaxed version of the problem you give it. You can control how severe that relaxation is using
precision. Both rand and prob take precision as a keyword argument of type Float64. Increasing the
precision will typically make the algorithms go slower, but the answer will be more precise. For example:

X = flip(0.5)
Y = flip(0.5)
@time prob(X & !Y; precision = 0.1)

A bit faster but very innacurate
julia> @time prob(X & !Y; precision = 1.0)
elapsed time: 0.005621369 seconds (33612 bytes allocated)
[1.0 1.0]

Slower but more accurate
@time prob(X & !Y; precision = 0.0001)
elapsed time: 0.00789781 seconds (72828 bytes allocated)
[0.24999999999999994 0.24999999999999994]

5.6. Precision 13

Sigma Documentation, Release 0.0.1

14 Chapter 5. Inference Queries

CHAPTER 6

License

The Sigma.jl package is licensed under the MIT “Expat” License:

> Copyright (c) 2015: Zenna Tavares. > > Permission is hereby granted, free of charge, to any person obtaining > a
copy of this software and associated documentation files (the > “Software”), to deal in the Software without restric-
tion, including > without limitation the rights to use, copy, modify, merge, publish, > distribute, sublicense, and/or sell
copies of the Software, and to > permit persons to whom the Software is furnished to do so, subject to > the following
conditions: > > The above copyright notice and this permission notice shall be > included in all copies or substantial
portions of the Software. > > THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
> EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF > MERCHANTABIL-
ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. > IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY > CLAIM, DAMAGES OR OTHER LIABIL-
ITY, WHETHER IN AN ACTION OF CONTRACT, > TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE > SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

15

Sigma Documentation, Release 0.0.1

16 Chapter 6. License

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

17

Sigma Documentation, Release 0.0.1

18 Chapter 7. Indices and tables

Index

L
logistic() (built-in function), 9

N
normal() (built-in function), 9

P
prob() (built-in function), 11

U
uniform() (built-in function), 9

19

	Getting Started
	Building Probabilistic Models
	Random Arrays
	Fixed Size Random Array

	Primitive Univariate Random Variable
	Uniform Distribution
	Logistic Distribution
	Normal Distribution

	Inference Queries
	Probability Queries
	Conditional Probability Queries
	Probability bounds
	Sampling
	Conditional Sampling
	Precision

	License
	Indices and tables

